Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 1999 Aug; 36(4): 233-9
Article in English | IMSEAR | ID: sea-28171

ABSTRACT

Extent of binding (gamma 2(1)) of sodium dodecyl sulphate (SDS) to the binary complex formed between calfthymus DNA and cetyltrimethylammonium bromide (CTAB) has been measured in mole per mole of nucleotide in the complex as function of concentration of SDS by using equilibrium dialysis technique at different temperatures and pH. Binding of SDS to thermally denatured DNA-CTAB complex has also been studied. The most interesting aspect to be noted in this experiment is that the water insoluble DNA-CTAB binary complex gets solubilized in the ternary mixture in presence of SDS but when DNA is thermally denatured, the ternary system DNA-CTAB-SDS remains insoluble. Significant change in the extent of binding has been noted with the variation of the relative composition of DNA and CTAB in their binary mixture. The data of binding of SDS to DNA-CTAB complex are compared more precisely in terms of the standard Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the complex with the change of SDS activity from zero to unity in the rational mole fraction scale.


Subject(s)
Animals , Cattle , Cetrimonium Compounds/chemistry , DNA/chemistry , Sodium Dodecyl Sulfate/chemistry , Solubility , Water/chemistry
2.
Indian J Biochem Biophys ; 1999 Jun; 36(3): 165-76
Article in English | IMSEAR | ID: sea-26409

ABSTRACT

Extent of binding (gamma 2(1)) of cationic surfactants cetyltrimethyl ammonium bromide (CTAB), myristyltrimethyl ammonium bromide (MTAB) and dodecyl trimethyl ammonium bromide (DTAB) to calf-thymus DNA, bovine serum albumin (BSA) and to their binary mixture respectively have been measured as function of bulk concentration of the surfactant by using equilibrium dialysis technique. Binding of CTAB has been studied at different pH, ionic strength (mu), temperature and biopolymer composition and with native and denatured states of the biopolymers. The chain-length of different long chain amines plays a significant role in the extent of binding under identical solution condition. The binding ratios for CTAB to collagen, gelatin, DNA-collagen and DNA-gelatin mixtures respectively have also been determined. The conformational structures of different biopolymers are observed to play significant role in macromolecular interactions between protein and DNA in the presence of CTAB. From the experimental values of the maximum binding ratio (gamma 2m) at the saturation level for each individual biopolymer, ideal values (gamma 2m)id have been theoretically calculated for binary mixtures of biopolymers using additivity rule. The protein-DNA-CTAB interaction in mixture has been explained in terms of the deviation (delta) of (gamma 2m) from (gamma 2m)id in the presence of a surfactant in bulk. The binding of surfactants to biopolymers and to their binary mixtures are compared more precisely in terms of the Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the biopolymers or biopolymer mixtures with the change of the bulk surfactant activity from zero to unity in the rational mole fraction scale.


Subject(s)
Cations , DNA/metabolism , DNA-Binding Proteins/metabolism , Proteins/metabolism , Surface-Active Agents/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL